Directions: Complete all questions clearly and neatly. You must show all work to have credit. Unclear work will not be graded. THIS IS A CRUCIAL HOMEWORK UNDERSTAND IT WELL FOR YOUR NEXT EXAM.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
(1) The joint density of X and Y is given by

$$f(x, y) = \begin{cases}
xe^{(-x+y)} & x > 0, y > 0 \\
0 & otherwise
\end{cases}$$

(a) Compute the density of X.

(b) Compute the density of Y.

(c) Are X and Y independent?
(2) Suppose that X and Y are independent continuous random variables. Show that

(a) $P\{X + Y \leq a\} = \int_{-\infty}^{\infty} F_X(a - y) f_Y(y) \, dy$

where f_Y is the density function of Y, and F_X is the distribution function of X.

(b) $P\{X \leq Y\} = \int_{-\infty}^{\infty} F_X(y) f_Y(y) \, dy$

where f_Y is the density function of Y, and F_X is the distribution function of X.
When a current \(I \) (measured in amperes) flows through a resistance \(R \) (measured in ohms), the power generated (measured in watts) is given by \(W = I^2R \). Suppose that \(I \) and \(R \) are independent random variables with densities

\[
\begin{align*}
f_I(x) &= 6x(1 - x) \quad 0 \leq x \leq 1 \\
f_R(x) &= 2x \quad 0 \leq x \leq 1
\end{align*}
\]

Determine the density function of \(W \).
(4) The density function of X is given by

$$f(x) = \begin{cases}
 a + bx^2 & 0 \leq x \leq 1 \\
 0 & otherwise
\end{cases}$$

If $E[X] = \frac{3}{5}$, find a, b.
(5) Suppose that X is equally likely to take on any of the values 1, 2, 3, 4. Compute
(a) $E[X]$

(b) $Var(X)$
(6) If X_1 and X_2 have the same probability distribution function, show that
\[\text{Cov}(X_1 - X_2, X_1 + X_2) = 0 \]
Note that independence is not being assumed.
(7) Suppose that X and Y are independent random variables having the common density function

$$f(x) = \begin{cases} xe^{-x} & x > 0 \\ 0 & otherwise \end{cases}$$

Find the density function of the random variable $\frac{x}{y}$.
The joint density function of X and Y is

$$f(x, y) = \begin{cases}
xy & 0 < x < 1, 0 < y < 2 \\
0 & \text{otherwise}
\end{cases}$$

(a) Are X and Y independent? Explain.

(b) Find the density function of X.

(c) Find the density function of Y.

(d) Find the joint distribution function.

(e) Find $E[Y]$.

(f) Find $P\{X + Y < 1\}$.